Физики придумали, как продлить непрерывную работу химического реактора до 30 лет

Учeныe Институтa ядeрнoй физики им. Г.И.Будкeрa СO РAН (ИЯФ СO РAН) и кaфeдры мaтeриaлoвeдeния в мaшинoстрoeнии Нoвoсибирскoгo гoсудaрствeннoгo тexничeскoгo унивeрситeтa (НГТУ) рaзрaбoтaли принципиaльнo нoвую тexнoлoгию сплaвлeния титaнa и тaнтaлa. В рeзультaтe был пoлучeн oсoбo стoйкий к кoррoзии мaтeриaл, кoтoрый пoчти нe рaзрушaeтся oт кoнтaктa с aгрeссивными срeдaми. С пoмoщью этoй тexнoлoгии был сoздaн экспериментальный химический мини-реактор. Эксперименты показали, что срок непрерывной работы реактора из такого материала составил бы 30   лет, что в несколько раз больше, чем реактора из особо стойкой стали. Об этом сообщается в работе, опубликованной в серии IOP Conference Series: Materials Science and Engineering.

С помощью промышленного ускорителя ЭЛВ-6, который выпускает в атмосферу концентрированный пучок электронов с энергией 1,4   МэВ, в ИЯФ СО РАН наплавляют порошки на металлы. Проникающая способность такого пучка составляет, в зависимости от материала, около одного миллиметра. Сканируя им по поверхности металла, на которую нанесен порошок, получают сплав. Используя этот метод, ученые ИЯФ СО РАН и НГТУ наплавили на титан тантал, за счет чего коррозионная стойкость наплавленного поверхностного слоя выросла примерно в 50   раз. В ИЯФ СО РАН отработаны элементы технологии создания промышленных листов из этого материала и возможность их сварки.

Перспективными представляются два применения сплава, полученного учеными: для крупнотоннажного производства азотной кислоты и в атомной отрасли. В атомной промышленности существует технология переработки отработанного ядерного топлива. После уменьшения до определенного уровня концентрации рабочего элемента и возрастания концентрации вредных загрязняющих изотопов ядерный реактор останавливается, а отработанные компоненты топлива перерабатываются и обогащаются. Резервуар, в котором происходит переработка, изготавливают из специальных сортов нержавеющей стали или сплава на основе никеля, но эти материалы обладают не очень высокой коррозионной стойкостью. Важен и вопрос безопасности. Со временем химический реактор, в котором перерабатывается отработанное ядерное топливо, становится радиоактивным, и чем дольше он способен работать без ремонта, тем   лучше.

«В рамках проекта мы изготовили из пластин полученного материала маленький химический реактор объемом в несколько литров. Мы налили в него концентрированную азотную кислоту, довели ее до кипения, предварительно точно взвесив наш сосуд. Кислота кипела несколько суток. Результат эксперимента нас очень порадовал: контрольное взвешивание показало, что реактор практически не потерял вес. Это означает, что материал, из которого он сделан, не разрушается от воздействия агрессивной среды. Но несколько суток испытаний   – слишком маленький срок, чтобы делать выводы, ведь срок службы настоящего реактора исчисляется десятилетиями. Перерасчет скорости разрушения материала показывает, что она составляет несколько десятков микрон в год. Получается, что химический реактор из нашего материала мог бы работать, как минимум, в течение 30   лет без остановок»,   — заявил руководитель проекта Михаил Голковский.

Один из участников работ, старший преподаватель НГТУ Алексей Руктуев отмечает, что если заменить традиционно применяемые материалы на разработанные, то следует ожидать увеличения срока службы примерно в десять   раз.

Комментарии и уведомления в настоящее время закрыты..

Комментарии закрыты.